DNSSEC

VeriSign Naming & Directory Services
ICANN Kuala Lumpur
July 2004
DNS Security Extensions (DNSSEC)

+ DNSSEC uses public key cryptography and digital signatures to provide:
 + **Data origin authentication**
 + E.g., “Did this DNS response really come from a.gtld-servers.net?”
 + **Data integrity**
 + E.g., “Did an attacker—a man-in-the-middle—modify this DNS response?”
 + **Bottom line:** DNSSEC offers protection against spoofing of DNS data
What DNSSEC Does Not Do

+ DNSSEC does not:
 + Provide any confidentiality for DNS data
 + I.e., no encryption
 + Assumption: The data in DNS is public
 + Address attacks against the name server itself
 + Denial of service
 + Implementation vulnerabilities
 + Etc.
DNSSEC killer app(?) : secure data store

+ Spamt mitigation
 + DNSSEC will not stop it outright but indirectly through output of IETF MARID WG
 + MARID WG focus is using DNS to ID valid originating mail senders
 + Focus of attack for spammers will then be to spoof DNS to get spam through

+ Opportunistic encryption
 + Want to use IPSEC encryption with hosts but do not know key
 + Use DNS to store/retrieve the public key

+ Secure shell
 + Use to find hosts’ SSH public keys
 + Would replace caching mechanism that is in place today

+ Tomorrow’s applications…
 + Information store for secure routing information?
 + ??
Infrastructure Impacts of DNSSEC
Implementing DNSSEC in \textit{com/net}

+ Extensions to EPP supporting DNSSEC provisioning
+ Update registry database to include DNSSEC-related information
+ Acquire cryptographic hardware
+ Define process to generate and maintain keys
+ Implement incremental signing process
+ Update zone file generation process
+ Update ATLAS (authoritative name server platform)
DNSSEC Provisioning

+ Registrant generates a public/private key pair for a zone
+ Registrant signs the zone with the private key
+ Registrant sends the zone’s public key to the registrar
+ Registrar sends registrant’s key to the registry
+ Registry puts registrant’s key hash (DS) in the TLD zone
+ Registry signs the TLD zone
+ Registry publishes signed TLD zone
Pilot Programs

+ www.dnssec.verisignlabs.com demonstrated Opt-In
 + Opt-In did not advance in the IETF and this pilot is now defunct
+ www.dlv.verisignlabs.com demonstrates an alternative called DNSSEC Lookaside Validation (DLV)
 + Protocol extension developed by Internet Systems Consortium (BIND maintainers)
 + DLV uses third-party for authentication rather than standard DNSSEC’s top-down model
+ Comprehensive DNSSEC pilot for .Net
 + Ready in September
 + Participants make local change to access DNSSEC-signed version of .Net
DNSSEC Consortium

- Most DNSSEC deployment meetings have focused on:
 - Protocol deficiencies
 - Securing the DNS root
 - Deployment strategies

- The **DNSSEC Consortium** will be focused on:
 - Encourage application developers to design, develop and launch the most meaningful solutions demanded by the marketplace
 - Getting all the DNS players (registries, registrars, OS providers, DNS software vendors, application developers, etc.) together to:
 - Share views on DNSSEC
 - Share deployment plans
 - Coordinate rollout dates
 - Compile a library of APIs, white papers, best practice documents, etc

- First meeting in San Diego in August before IETF