Evolution of DNS services in .MX
Index

1. In the beginning ...
2. Shared Unicast phase 1 and TSIG
3. Dynamic updates and IXFR
4. Shared Unicast phase 2
 a) All four NS RR’s in Shared Unicast
 b) Blocking and unblocking of attackers
 c) Diversity
 d) Traffic Engineering
5. What’s next ...
In the beginning ...

- Sponsored secondaries with other organizations

- Shared Unicast phase 1 (only on one NS RR), all DNS servers operated by NIC Mexico

- TSIG enabled servers

- Dynamic updates and IXFR

- Shared Unicast phase 2 (all four NS RR)
Shared Unicast phase 1
The DNS is not redundant by itself

DNS servers for .MX before July 2003

1/N % approximately the level of impact on the TLD for every DNS server that stops answering queries

25% in the case of .MX before July 2003
Single-homed server

ISP X

dns.domain.example
192.0.2.1
Multihomed server

dns.domain.example
192.0.2.1
Server with Shared Unicast IP

ISP X

Location A

ISP Y

Location B

dns.domain.example

192.0.2.1
Shared Unicast phase 1

DNS servers for .MX, SLD’s and IR for the NIR at July 2003

- Local mirror in one entity, Shared Unicast in the other, with 3 physical global nodes
- Implemented TSIG

ns.nic.mx

yacateuctli.nic.mx

Monterrey, MX
Triara

Monterrey, MX
Avantel

México City, MX
Alestra

San Jose, US
Verio
Dynamic Updates
Dynamic Updates

- Implemented, since January 2004

- Every update, deletion or creation goes immediately to the DNS stealth master

- By IXFR the changes go to the secondaries

- The user does not have to wait more than a few seconds, normally, to see her/his domain online
Shared Unicast phase 2
Shared Unicast phase 2

DNS servers for .MX, SLD’s and IR for the NIR at July 2005

Shared Unicast in all the servers with 4 entities (BTW, we changed the hostnames for several reasons):

- a.ns.mx
- b.ns.mx
- c.ns.mx
- d.ns.mx

On 5 physical global nodes:

- Monterrey, MX Triara
- Monterrey, MX Avantel
- México City, MX Alestra
- San Jose, US Verio
- San Francisco, US ISC
Blocking and unblocking of attackers

- Monitoring the number of queries based on source IP
- Automatic blocking on firewall on DNS server
- Exponentially growing time of blocking on attackers: 5, 10, 20, 40, 60 minutes
- A memory of 3 hours of misbehavior
Diversity on:

- **Operating Systems**: FreeBSD 4, Linux 2.6, OpenBSD 3.7, Solaris 9
- **Hardware architectures**: AMD64, Intel x86, Sparc
- **DNS implementations**: BIND 8.4, BIND 9.2, ANS 2.3
- **Firewalls**: IPFW2, IPF, PF, IPtables
- **BGP implementations**: Quagga, OpenBGP, Cisco IOS
- **Carriers** covering ~90% of Mexico’s Internet: Alestra, Avantel and Telmex plus Verio and ISC
Traffic engineering

- Different physical nodes are “seen” from one point on the Internet

- We turned off some entities on some nodes; but every entity is on, in at least, 3 nodes; also taking care of the diversity

- In case of problems on a node, the off entities can be manually turned on for taking over the load
Other features

- Full control of DNS system
- 7x24 contract for all the IDC’s, except one
- Easy to include one more server to the pool, there is no need to request IANA updates, anymore (unless we decide to include another entity)
- Redundant remote access on all servers: SSH, KVM over Internet or analog PSTN modem
- Memory file system for zone storage
What’s next ...
What’s next ...

- IPv6 support on the Registry applications
- Detailed statistics on DNS queries
- Secondary for other ccTLD’s in Shared Unicast
- IPv6 transport ... soon
- DNSsec ... later
- IRIS ... later
- ENUM ... maybe
- IDN’s ... not for some time
More than 150 millions of DNS queries per day.

Have or will have reports on number of queries:
- Type of queries (A, NS, PTR, etc.)
- Per source (ISP, country/zone)
- Existent domains
- Non existent domains
Thank you

Francisco Arias
farias@nic.mx