

Network Information Center México

Evolution of DNS services in .MX

- 1. In the beginning ...
- Shared Unicast phase 1 and TSIG
- Dynamic updates and IXFR
- 4. Shared Unicast phase 2
 - a) All four NS RR's in Shared Unicast
 - b) Blocking and unblocking of attackers
 - c) Diversity
 - d) Traffic Engineering
- 5. What's next ...

- Sponsored secondaries with other organizations
- Shared Unicast phase 1 (only on one NS RR), all DNS servers operated by NIC Mexico
- TSIG enabled servers
- Dynamic updates and IXFR
- Shared Unicast phase 2 (all four NS RR)

The DNS is not redundant by itself

Single-homed server

dns.domain.example

192.0.2.1

dns.domain.example

192.0.2.1

Server with Shared Unicast IP

dns.domain.example

192.0.2.1

DNS servers for .MX, SLD's and IR for the NIR at July 2003

- Local mirror in one entity, Shared Unicast in the other, with 3 physical global nodes
- Implemented TSIG

ns.nic.mx

Monterrey, MX Triara yacateuctli.nic.mx

México City, MX Alestra

San Jose, US Verio

Dynamic Updates

- Implemented, since January 2004
- Every update, deletion or creation goes immediately to the DNS stealth master
- By IXFR the changes go to the secondaries
- The user does not have to wait more than a few seconds, normally, to see her/his domain online

DNS servers for .MX, SLD's and IR for the NIR at July 2005

Shared Unicast in all the servers with 4 entities (BTW, we changed the hostnames for several reasons):

a.ns.mx

b.ns.mx

c.ns.mx

d.ns.mx

On 5 physical global nodes:

Monterrey, MX Triara Monterrey, MX Avantel México City, MX Alestra San Jose, US Verio San Francisco, US ISC

Blocking and unblocking of attackers

Monitoring the number of queries based on source IP

Automatic blocking on firewall on DNS server

Exponentially growing time of blocking on attackers: 5, 10, 20, 40, 60 minutes

A memory of 3 hours of misbehavior

- Operating Systems: FreeBSD 4, Linux 2.6, OpenBSD 3.7, Solaris 9
- Hardware architectures: AMD64, Intel x86, Sparc
- **DNS** implementations: BIND 8.4, BIND 9.2, ANS 2.3
- Firewalls: IPFW2, IPF, PF, IPtables
- BGP implementations: Quagga, OpenBGP, Cisco IOS
- Carriers covering ~90% of Mexico's Internet: Alestra, Avantel and Telmex plus Verio and ISC

- Different physical nodes are "seen" from one point on the Internet
- We turned off some entities on some nodes;
 but every entity is on, in at least, 3 nodes; also taking care of the diversity
- In case of problems on a node, the off entities can be manually turned on for taking over the load

- Full control of DNS system
- 7x24 contract for all the IDC's, except one
- Easy to include one more server to the pool, there is no need to request IANA updates, anymore (unless we decide to include another entity)
- Redundant remote access on all servers: SSH, KVM over Internet or analog PSTN modem
- Memory file system for zone storage

What's next ...

- IPv6 support on the Registry applications
- Detailed statistics on DNS queries
- Secondary for other ccTLD's in Shared Unicast
- IPv6 transport ... soon
- DNSsec ... later
- IRIS ... later
- ENUM ... maybe
- IDN's ... not for some time

Statistics on DNS queries

- More than 150 millions of DNS queries per day.
- Have or will have reports on number of queries:
 - Type of queries (A, NS, PTR, etc.)
 - Per source (ISP, country/zone)
 - Existent domains
 - Non existent domains

Thank you

Francisco Arias farias@nic.mx